Adaptive Quantum Inspired Genetic Algorithm for Combinatorial Optimization Problems

نویسندگان

  • Jyoti Chaturvedi
  • Ko Hisn Liang
  • Xin Yao
  • Imtiaz Korejo
  • Shengxiang Yang
  • B. Rylander
  • T. Soule
  • J. Foster
  • J. Alves-Foss
  • Tzung-Pei Hong
  • Hong-Shung Wang
  • Wen-Yang Lin
  • Wen-Yuan Lee
  • Huaixiao Wang
  • Jianyong Liu
  • Jun Zhi
  • Chengqun Fu
  • Jong-Hwan Kim
چکیده

The development in the field of quantum computing gives us a significant edge over classical computing in terms of time and efficiency. This is particularly useful for NP-hard problems such as graph layout problems. Since many real world problems are effectively solved by genetic algorithm (GA) and the performance of GA highly depends upon the setting of its parameters, therefore this paper focuses on a Quantum Inspired Genetic Algorithm (QIGA) and develops and evaluates adaptive strategies for the same. QIGA adapts ideas of Q-bits, superposition of Q-bits from quantum computing. The effectiveness and the applicability of adaptive QIGA is demonstrated by experimental results on the benchmark Knapsack, Maxcut and Onemax combinatorial optimization problems. The results show that adaptive QIGA is superior to QIGAs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

A hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem

We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...

متن کامل

An adaptive quantum-inspired differential evolution algorithm for 0-1 knapsack problem

Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces. However, the design of its operators makes it unsuitable for many real-life constrained combinatorial optimization problems which operate on binary space. On the other hand, the quantum inspired evolutionary algorithm (QEA) is ver...

متن کامل

Quantum-Inspired Differential Evolution with Particle Swarm Optimization for Knapsack Problem

This paper presents a new hybrid algorithm called QDEPSO (Quantum inspired Differential Evolution with Particle Swarm Optimization) which combines differential evolution (DE), particle swarm optimization method (PSO) and quantum-inspired evolutionary algorithm (QEA) in order to solve the 0-1 optimization problems. In the initialization phase, the QDEPSO uses the concepts of quantum computing as...

متن کامل

A FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS

Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014